Analysis of the Rational Krylov Subspace and ADI Methods for Solving the Lyapunov Equation

نویسندگان

  • Vladimir Druskin
  • Leonid Knizhnerman
  • Valeria Simoncini
چکیده

For large scale problems, an effective approach for solving the algebraic Lyapunov equation consists of projecting the problem onto a significantly smaller space and then solving the reduced order matrix equation. Although Krylov subspaces have been used for long time, only more recent developments have shown that rational Krylov subspaces can be a competitive alternative to the classical and very popular Alternating Direction Implicit (ADI) recurrence. In this paper we develop a convergence analysis of the Rational Krylov Subspace Method (RKSM), based on the Kronecker product formulation and on potential theory. Moreover, we propose new enlightening relations between this approach and the ADI method. Our results provide solid theoretical ground for recent numerical evidence of the superiority of RKSM over ADI when the involved parameters cannot be computed optimally, as is the case in many practical application problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the ADI method for the Sylvester Equation and the optimal-$\mathcal{H}_2$ points

The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal i...

متن کامل

On the ADI method for the Sylvester Equation and the optimal-H2 points

The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal i...

متن کامل

Low Rank Solution of Lyapunov Equations

This paper presents the Cholesky factor–alternating direction implicit (CF–ADI) algorithm, which generates a low rank approximation to the solution X of the Lyapunov equation AX + XAT = −BBT . The coefficient matrix A is assumed to be large, and the rank of the righthand side −BBT is assumed to be much smaller than the size of A. The CF–ADI algorithm requires only matrix-vector products and mat...

متن کامل

Model Order Reduction by Approximate Balanced Truncation: A Unifying Framework / Modellreduktion durch approximatives Balanciertes Abschneiden: eine vereinigende Formulierung

A novel formulation of approximate truncated balanced realization (TBR) is introduced to unify three approaches: two iterative methods for solving the underlying Lyapunov equations – the alternating directions implicit (ADI) iteration and the rational Krylov subspace method (RKSM) – and a two-step procedure that performs a Krylov-based projection and subsequently direct TBR. The framework allow...

متن کامل

An Error Analysis for Rational Galerkin Projection Applied to the Sylvester Equation

In this talk we suggest a new formula for the residual of Galerkin projection onto rational Krylov spaces applied to a Sylvester equation, and establish a relation to three different underlying extremal problems for rational functions. These extremal problems enable us to compare the size of the residual for the above method with that obtained by ADI. In addition, we may deduce several new a pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2011